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Executive summary  

Fishery-independent surveys are scientific studies that provide essential 

information for stock assessments and for developing appropriate management plans.  Pilot 

studies are conducted prior to the start of a survey program, to gain information about the 

spatial distribution of the stock in order to optimize the survey.  A pilot study for the 

annual fishery-independent survey program for the green sea urchin fishery was initialized 

in Maine in the summer of 2001.  The pilot study was extensive, time-consuming and 

costly, and needed to be optimized to ensure its feasibility as a long-term scientific survey.  

The high degree of spatial variability in sea urchin abundance, however, prevented us from 

using standard optimization techniques, such as traditional statistics or even geostatistics.  

Kernel estimation and computer simulations were used to characterize the large-scale 

spatial density structure of the sea urchin population and investigate how different 

sampling strategies effected realizations of the density structure.  Since realizations of the 

large-scale density structure are the vital components of the sea urchin stock assessment 

(Chapter 3), any changes in this structure would dramatically alter the outcome of the 

assessment.   Therefore, we defined an optimal sampling strategy as a design that produces 

realizations of the large-scale spatial structure that are similar to the original population 

while using less sampling intensity than the original sampling strategy.  Using the original 

survey strategy, a reduction of sampling intensity to 10 sites per strata, or 90 total sites, 

was optimal because it corresponded to a large decrease in effort but only a marginal 

decrease in precision.  However, a regular sampling strategy, with approximately 90 grids 

arranged along the coastline, provided the highest precision for the green sea urchin fishery 



when analyzed solely with spatial statistics.  Considering that the sea urchin data will be 

analyzed by traditional and spatial statistics, we believe that the original stratified random 

sampling design reduced to 10 locations per strata is the most sensible optimization for the 

Maine green sea urchin fishery-independent survey program at this time.   



 

Introduction 

Fishery-independent surveys are scientific studies designed to provide biological 

and ecological information on a fish stock (Hilborn and Walters 1992; Jennings 2001).  

They can generate high quality data, with small variances and biases, which are 

representative of the entire targeted fish population.  Stock assessments based on fishery-

independent data have less uncertainty and bias than ones based on fishery-dependent data, 

which are generated from normal fishing activities.  Therefore, fishery-independent 

surveys are essential for stock assessments and for developing appropriate management 

plans (Hilborn and Walters 1992).  To establish an effective fishery-independent survey 

program, pilot studies should be conducted prior to the start of the survey program in order 

to gain information about the spatial distribution of the stock and to identify environmental 

variables that influence this distribution.  The pilot study is then redesigned, or optimized, 

based on the information collected and on the future analysis plan (Andrew and Mapstone 

1987; Kitsiou et al. 2001).  According to Andrew and Mapstone (1987), “Optimization of 

the design of sampling programmes is achieved by determining the most efficient 

allocation of resources-i.e., minimizing decreases in precision and/or resolution imposed 

by cost or by logistical constraints.”    

A pilot study for an annual fishery-independent survey program was initialized in 

the summer of 2001 for the green sea urchin fishery in Maine.  The pilot study was 

designed and implemented to provide detailed information on the population structure, 

spatial variability and biological/ecological characteristics of the sea urchin stock along the 

coast of Maine.  The pilot study was extensive, time-consuming and costly, and could not 



be maintained for the annual survey.  Therefore, the pilot study needs to be optimized to 

reduce the cost while maintaining high precision and accuracy of the annual survey.   

Many statistical techniques have been developed to optimize sampling programs, 

including traditional experimental design, geostatistics and Monte Carlo computer 

simulation (Cochran 1977; Rivoirard 2000; Petitgas 2001).  Traditional statistical methods 

are primarily based on random sampling and optimization usually involves stratification of 

the study area based on the spatial structure of the stock  (Cochran 1977; Hilborn and 

Walters 1992).  The study area is divided into smaller regions, or strata, using variables 

that influence the spatial structure of the stock, such as depth or habitat, in order to increase 

sampling precision and accuracy.  Optimization with traditional statistics is limited, 

though, because these methods assume that the fish stock is distributed randomly over the 

study area or strata.  Truly random distribution in a fished stock is rare, however, most 

stocks exhibit spatial patterns or dependence, also known as spatial heterogeneity.  A 

different branch of statistics, known as spatial statistics, is specifically designed to 

investigate the spatial distribution of a stock and can be used for survey design 

optimization. 

Spatial statistics or spatial analyses are employed to model first and second-order, 

or large and small-scale, spatial variability of a variable, such as fish abundance, in order to 

estimate the value at unobserved locations (Bailey and Gatrell 1995; Petitgas 2001).  

Intrinsic second-order methods have become the most popular geostatistical tools and the 

kriging variance, or mean square prediction error, can been used to compare survey 

designs for optimizing fishery surveys (Pelletier and Parma 1994; Rivoirard et al. 2000; 

van Groenigen 2000; Petitgas 2001).  Two assumptions must be met in order to use 



intrinsic geostatistical methods.  First, the spatial distribution of the stock cannot be 

affected by the geometry of the region, i.e. the spatial distribution cannot differ near the 

borders of the zone (Petitgas 1993; Bailey and Gatrell 1995; Warren 1998; Rivoirard et al 

2000).  Second, the process must exhibit some degree of second-order stationarity, or 

spatial dependence, which means that small-scale deviations in variables are similar in 

neighboring sites.  In chapter 3, the suitability of the green sea urchin data for analysis with 

intrinsic geostatistics was addressed.  The data did not satisfy the assumptions, especially 

for stationarity; the sea urchin data are too highly skewed and spatially variable.  Since the 

assumptions are violated, we must use other spatial analysis techniques to characterize the 

spatial variability of the stock (Bailey and Gatrell 1995; Warren 1998; Petitgas 2001).  . 

Several spatial analysis techniques are available for investigating the large-scale 

variations in fish stock abundance (Bailey and Gatrell 1995).  For example, in Chapter 3, 

triangulated irregular networks (TINs) were used to estimate exploitable biomass for the 

green sea urchin fishery.  TINs are good estimators of large-scale spatial patterns but 

require relatively evenly spaced sampling locations; its performance decreases when 

sampling locations become clustered (ESRI 1998; Guan et al 1999).  Kernel estimation is 

an advanced form of weighted spatial moving averages that can be used with any type of 

sampling strategy: random, clustered or grids (Bailey and Gatrell 1995).  It does not 

require any major assumptions nor does it require complex statistical decisions or 

modeling.  Therefore, kernel estimation is used to estimate the large-scale patterns in sea 

urchin stock abundance, but since it does not incorporate a variance structure, it cannot be 

directly used for sample design optimization.   



Kernel estimation paired with computer simulations may provide the framework 

necessary for optimizing survey programs.  Computer simulation approaches have been 

increasingly used in fisheries due to their ability to incorporate different sources of 

variations, especially spatial and temporal heterogeneity (e.g. Hilborn and Walters 1987; 

Horppila and Peltonen 1992; Andrew and Chen 1997).  A simulation approach allows 

researchers to investigate how uncertainty in the spatial structure of a fished stock can 

affect survey programs and stock assessments.  Sampling programs based on random 

sampling theory can have countless realizations, and the precision of one realization may 

not represent the precision of the sampling program.  Simulations allow us to produce 

multiple realizations and estimate the mean precision of a sampling strategy.   

The objective of this project is to develop a framework that incorporates spatial 

statistics and computer simulations to identify an optimum sampling strategy.  An optimal 

sampling strategy should provide the most accurate and precise information on a stock, as 

possible. Since we are using spatial statistics, we are most interested in the large-scale 

spatial structure of sea urchin density.  The combination of kernel estimation and computer 

simulation allows us to estimate the large-scale spatial density structure and determine how 

different sampling strategies effect realizations of this structure.  Since these realizations 

are the vital components of the sea urchin stock assessment , any changes in these 

structures would dramatically alter the outcome of the assessment.   Therefore, we define 

an optimal sampling strategy as a design that produces realizations of the large-scale 

spatial structure that are similar to the original population while using less sampling 

intensity than the original sampling strategy.   

 



Materials and Methods 

Urchin density and size frequency information were obtained from the 2001 pilot 

study for the State’s annual fishery independent survey.  The Department of Marine 

Resources employed a stratified random sampling design, where 16 sites were sampled in 

each of 9 strata along the Maine coast exclusively in potential urchin habitat (rock or 

gravel substrate) (Figure 1).  To minimize the sample variances within the strata, the width 

of each stratum was inversely proportional to the commercial landings in the region.  At 

each site, 90 quadrats (1m2) were randomly sampled along a linear transect set 

perpendicular to shore using SCUBA.  All urchins within the quadrat were counted and 

test diameter was measured.  Sampling intensity was equally divided over three depth 

zones: 0-5m, 5-10m, and 10-15m.  Mean site densities were calculated, as were mean site 

densities by depth zones to allow each depth stratum to be analyzed separately. 

A simulation framework was developed to test the ability of different sampling 

programs to recreate the large-scale spatial structure of the sea urchin population (Figure 

4.2.).  Mean sea urchin densities by depth zone, as well as bathymetry and suitable urchin 

substrate data, were the initial inputs for the framework.  Kernel estimation was used to 

estimate the large-scale variations in the green sea urchin stock by depth zone (Bailey and 

Gatrell 1995).  The kernel estimate for mean urchin density at a location is calculated as 
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where µ̂ τ is the mean urchin density; k is the kernel, or bivariate probability function; s is 

the location (x,y) where the urchin density is being estimated; si are the locations where the 

urchin densities were sampled; τ is the bandwidth, or the radius of the moving window; 



and yi is the urchin density.  The study area was converted into an ASCII raster image 

(1500 x 1178 pixels, pixel=236.93 m) and weighted averages were computed for every 

pixel based on a quartic kernel.  A bandwidth, in pixels, was selected to minimize error and 

ensure adequate coverage and smoothness.  The kernel estimation technique produced 

plots of smoothed urchin densities by depth zone.  These plots were modified to only 

include areas of the rock/gravel substrate, in effect producing spatial representations of the 

population density structure (Figure 4.3). These original density plots were used to test 

different sampling strategies and gauge their relative performance.  The sampling strategies 

varied based on the number of sites and number and size of strata, allowing us to test the 

following survey designs: random, stratified random with equal strata width, and stratified 

random with strata based on the original survey design (Table 4.1.).  These sampling 

designs were chosen because they were feasible for the program and are routinely used in 

fishery surveys.  Resampling was conducted randomly within the potential urchin habitat 

in the appropriate depth zone, producing sets of urchin densities by location.  New urchin 

density plots were created from these observations using the kernel estimation technique.  

The number of simulations was limited to 50 due to restraints placed on computing power 

imposed by the large size of the files. 

The performance of a sampling strategy was evaluated using mean squared error 

(MSE).  The MSE has been used to determine optimal sampling strategies for fisheries and 

is calculated as 
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where QO is the stock density value from the original density plot, QS is the stock 

density value from the sampled plot, and N is the number of simulations (Cochran 1977; 

Guan et al. 1999).  MSE was calculated for each pixel in the urchin density plots 

(n=1,767,000), creating a plot of MSE for each sampling strategy.  A mean MSE value was 

calculated for each plot from the pixel MSE values to facilitate selection of an optimal 

sampling strategy.  An optimal sampling strategy is a design that minimizes mean MSE 

while using less sampling intensity than the original pilot study.   

 

Results 

The first kernel estimation step produced the original density plots, which 

characterizes the large-scale spatial variations in the sea urchin stock (Figure 4.3.).  After 

implementing a sampling strategy, the second kernel estimation step created the sampled 

density plots (Figure 4.4.).  Finally, plots of MSE were created for each scenario by 

calculating MSE per pixel (Figure 4.5.).    

The stratified random strategy from the pilot study was tested using the 3 depth 

zone datasets and an average site dataset.  MSE values for depth zone 1, 0-5 m, were 

considerably higher than the other datasets (Figure 4.6.).  This result suggested that depth 

zone 1 had the highest spatial variability, so recreations of the large-scale variations in 

urchin density were the least precise.  This dataset was used in all subsequent analyses 

because it is the most variable urchin density structure; it represents a worst-case scenario.  

A reduction of sampling intensity to 10 sites per strata, or 90 total sites, corresponded to a 

large decrease in effort but only a marginal decrease in precision (Figure 4.6.).  MSE at a 



sampling intensity of 90 sites was used as a reference point for comparison between 

sampling strategies. 

None of the tested sampling strategies had consistently lower MSE values than the 

original pilot study design, over all sampling intensities (Figure 4.7.).  At low sampling 

intensities (less than 27 sites) random sampling had the lowest MSE.  At greater than 27 

sites, the original survey had the lowest MSE values over the majority of sampling 

locations.  However, when sampling intensity was set at 90 sites, MSE values for the 

stratified random strategies with equal strata width dropped below the original survey 

design at higher levels of stratification.   

At 90 sites, sampling strategies with greater than 9 equal sized strata had lower 

MSEs than the original survey design (Figure 4.8.).  MSE values decreased with increasing 

stratification, reaching a minimum at 45 strata with 2 sampling locations. The original 

survey strategy performed better, with 90 sites, than random sampling (1 strata) and all 

stratified random strategies with less than 9 equal sized strata.   

 

Discussion 

In optimization studies, we assume that the population was oversampled so the data 

collected is representative of the entire population.  We believe that this assumption is 

valid for the 2001 pilot study for the green sea urchin fishery-independent survey; 

therefore we can legitimately optimize the survey.  We defined an optimal sampling 

strategy as a design that produces realizations of the large-scale spatial structure that are 

similar to the original population while using less sampling intensity than the original 

sampling strategy.  Within the original survey design, MSE quickly decreased and leveled 



off as sampling intensity increased (Figure 4.6.).  We chose 90 sites as a reference point for 

this sampling strategy because it corresponded to a large decrease in sampling effort, a 

marginal increase in MSE and was buffered from the high MSE values at lower sampling 

intensities.  When comparing amongst other sampling designs, however, the original 

sampling strategy did not have the lowest MSE. 

In our study, the stratified random strategy with equal strata width had comparable 

or higher precisions than the original stratified random strategy.  In particular, sampling 

strategies with more than 9 equal sized strata had considerably lower MSE values than the 

original sampling strategy (Figure 4.8.).  Interestingly, MSE decreased further with added 

stratification.  The high levels of stratification most likely caused this increase in precision.  

As the number of strata increased, and correspondingly the number of sampling locations 

per strata decreased, the sampling strategy more closely resembled a regular, or grid, 

sampling strategy.  Grids have long been considered ideal sampling strategies for analysis 

with spatial statistics (Haining 1990, Rivoirard et al. 2000; Petitgas 2001).  In fact, as long 

as the spatial process is not periodic, grids are the preferred option (Haining 1990; Simard 

et al. 1992).  Accordingly, a regular sampling strategy, with 90 grids arranged along the 

coastline, would provide the highest precision for the green sea urchin fishery when 

analyzed with spatial statistics.  

Currently the green sea urchin fishery is not analyzed solely with spatial statistics, 

though.  Fishable biomass was estimated with spatial statistics (Chapter 3), while stock 

assessments (Chen and Hunter 2003) and investigations into biological reference points 

(Chapter 1) have been conducted using fisheries population dynamics and computer 

simulation techniques.  Therefore, the optimal sampling strategy not only needs to satisfy 



the original criteria, i.e. minimizing decreases in precision while reducing sampling 

intensity, but, additionally, must be suitable to the future analysis plans (Andrew and 

Mapstone 1987).  A regular sampling strategy may be the preferred design for analyzing 

the sea urchin stock with spatial statistics but it is not preferred for traditional statistics.  

When used with traditional statistics, regular sampling strategies can yield greater 

precision, but estimates are usually biased and sample variance cannot be directly 

estimated from the samples (Cochran 1977: Hilborn and Walters 1992).  Conversely, 

stratified random sampling strategies are appropriate for both traditional statistics and 

spatial statistics.  In traditional statistics, stratified random strategies have greater precision 

than random designs if the variance of a variable per strata is less than the overall variance 

(Hilborn and Walters 1992).  In spatial statistics, stratified random strategies can have 

lower variances than random and grid designs, especially if there is a spatial trend (Haining 

1990).  So, a careful designed stratified random strategy, where strata size reduces 

sampling variance, would be more flexible for analysis than a regular sampling strategy. 

An optimal sampling strategy must balance many factors, ranging from logistics 

and cost, to precision and analysis techniques.  We believe that the original stratified 

random sampling strategy with reduced sites per strata is the best compromise and a 

sensible optimization for the Maine green sea urchin fishery-independent survey program 

at this time.  Further simulation work on optimization should continue in order to 

investigate different sampling designs using more simulations. 
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Table 4.1. Summary of the sampling strategies evaluated in this study. 

Sampling strategy Number of strata Sites per strata 

Original Stratified Random 

Strata width dependent on 

landings 

9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16 

Random 1 10, 20, 30, 40, 50, 60, 70, 80, 

90, 100, 110, 120, 130, 140, 

150 

Stratified Random 

Equal strata width 

2 6, 12, 18, 24, 30, 36, 42, 48, 

54, 60, 66, 72 

 3 4, 8, 12, 16, 20, 24, 28, 32, 36. 

40, 44, 48 

 4 3, 6, 9, 12, 15, 18, 21, 24, 27, 

30, 33, 36 

 5 3, 6, 9, 12, 15, 18, 21, 24, 27, 

30 

 6 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20, 22, 24 

 7 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20, 22 

 8 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18 



   

Table 4.1. Contd   

Sampling strategy Number of strata Sites per strata 

Stratified Random 

Equal strata width 

9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16 

 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15 

 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14 

 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12 

 15 6 

 18 5 

 30 3 

 45 2 

 90 1 

For the stratified random strategies with equal strata width, strata are defined as 
equal subdivisions of the coast along an east-west axis. 
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Figure 4.1. Mean urchin densities (urchins m-2) for the 0-5 m depth zone from the 2001 

pilot study.  Strata from the original stratified random strategy are labeled. 
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Figure 4.2. Flowchart of simulation approach to estimate the variance associated with 

a sampling strategy for the Maine sea urchin fishery. 
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Figure 4.3. Original density plot characterizing the large-scale spatial variations in 

stock for density (urchins m-2) depth zone 1 (0-5m) in areas west of Mt. Desert Island.
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Figure 4.4. One simulation of a sample density plot (urchins m-2) created by sampling the 

original density plot with the original stratified random design using 10 sites per strata in 

areas west of Mt. Desert Island.
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Figure 4.5. Plot of MSE for the original stratified random design using 10 sites per strata in 

areas west of Mt. Desert Island. Mean MSE is 2.90. 
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Figure 4.6. Mean squared error (MSE) as a function of the number of sites sampled per 

strata, using the original survey design by depth zone.  The dashed line represents 90 

sampling locations, 10 sites in each of 9 strata, which was used for comparisons amongst 

different sampling strategies. 
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Figure 4.7. Mean squared error (MSE) as a function of the number of sites for the original 

stratified random sampling strategy (Strat Rand), random sampling, and stratified random 

sampling with equal strata width (3-12 strata) for depth zone 1 using the simulation 

framework approach. 
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Figure 4.8. Mean squared error (MSE) for stratified random sampling strategies with equal 

strata width using 90 samples.  The dashed line represents the MSE for the original 

sampling strategy with 90 sites, 10 in each of the 9 unequally sized strata. 



 Appendix  

PROCEDURE AND COMPUTER CODE FOR IDENTIFYING OPTIMAL 

SAMPLING STRATEGIES 

 

Procedure for identifying optimal sampling strategies 

1. Create a text file of fish densities by location.  Place the x coordinate in the first 

column, the y coordinate in the second column and the density value in the third 

column.  Do not include column headings in the text file. 

2. Create an ArcASCII template file.  This file indicates what regions have suitable 

habitat and potential fish abundance.  The sampling program will be limited to 

these regions.  Note: a buffer zone should be created around the region of interest in 

valid.asc.  The width of the buffer zone should be equal to or greater than the size 

of the moving window (kernel). 

a. The file can be created directly in an ASCII format or it can be converted 

from other spatial formats, such as shapefiles, TINs, and grids, using the 

ArcToolbox program from ArcInfo 7.1. 

3. Rename the urchin density text file “obs.txt” and the template ASCII to “valid.asc.” 

and the bathymetry ASCII to “gridC.asc.”  Place these files in the same folder as 

the C++ kernel estimation program. 

4. Run the C++ kernel estimation program. Follow the directions on the program.  

Note: The C++ code is designed for a stratified random strategy with a set number 

and size for the strata.  The “Size of the moving window” is the kernel length and is 



equivalent to the radius of a circle in pixels.  We recommend limiting the number 

of simulations because the ArcASCII files can be very large. 

5. When the program terminates, enter 1.  Then run the C++ mean squared error 

(MSE) estimation program.  The program will output the mean MSE and create an 

ASCII file of MSE. 

 
C++ computer code for kernel estimation and implementation of a stratified random 
sampling strategy 
 
// biomass.cpp : calculates biomass of an arc ascii grid A based on constraints 
//           
 definde by an arc ascii grid B. 
 
 
#include "stdafx.h" 
#include "biomass.h" 
#include <fstream.h> 
#include "math.h" 
#include "Matrix.h" 
#include "Location.h" 
 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __FILE__; 
#endif 
 
 
 // Macro to get a random integer with a specified range  
 #define getrandom(min, max) \ 
  ((rand()%(int)(((max) + 1)-(min)))+ (min)) 
 
 
 
CString int_to_string(int number, CString startstring) 
{ 
 bool done = false; 
 
 while (!done) 
 { 



  if ((number/10) < 1) 
  { 
   if (number == 0) 
    startstring = "0" + startstring; 
   if (number == 1) 
    startstring = "1" + startstring; 
   if (number == 2) 
    startstring = "2" + startstring; 
   if (number == 3) 
    startstring = "3" + startstring; 
   if (number == 4) 
    startstring = "4" + startstring; 
   if (number == 5) 
    startstring = "5" + startstring; 
   if (number == 6) 
    startstring = "6" + startstring; 
   if (number == 7) 
    startstring = "7" + startstring; 
   if (number == 8) 
    startstring = "8" + startstring; 
   if (number == 9) 
    startstring = "9" + startstring; 
    
   done = true; 
  } 
    
  if ((number/10) >= 1) 
  { 
   startstring = int_to_string((number-(int(number/10)*10)), 
startstring); 
   number = int(number/10); 
  } 
 } 
 
 return startstring; 
} 
 
 
///////////////////////////////////////////////////////////////////////////// 
// The one and only application object 
 
CWinApp theApp; 
 
//using namespace std; 
 
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 



{ 
 int nRetCode = 0; 
 
 // initialize MFC and print and error on failure 
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0)) 
 { 
  // TODO: change error code to suit your needs 
  cerr << _T("Fatal Error: MFC initialization failed") << endl; 
  return nRetCode = 1; 
 } 
/////////////////////////////////////////////////////////////////////////////// 
//////// MY CODE 
  
  
 ifstream inFile;  // Input data file. 
 ofstream outFile; // Output data file. 
 CMatrix gridA, mastergridA, tempgrid, validgrid; 
 char chardummy; 
 int ncols, nrows, urxwin, urywin, xsample, ysample; 
 int intdummy = 0, i, j, k, nodata=-9999, n, max=0, min=0, maxout, runs=0; 
 double res, doubledummy, urchins, tau, kf, d; 
 bool data; 
 CLocation sample, tempobs; 
 CList<CLocation,CLocation&> observations; 
 CString filename, filename2; 
 
 double llx, lly, llxwin, llywin, count; 
 double winllx, winlly, winurx, winury, winarea; 
 int windowsize, sampleloop; 
 double wincenterx, wincentery; 
 
 const pi=3.141592653589793; 
 
 
 cout << "Enter 1 to load observations (obs.txt):"; 
 cin >> intdummy; 
 cout << "\n"; 
 
 
 gridA.Empty(); 
 tempgrid.Empty(); 
 validgrid.Empty(); 
 mastergridA.Empty(); 
 
   
 inFile.open("obs.txt");         



 if(!inFile)          
      
 { 
  cout << "Error opening file\n"; 
  return nRetCode; 
 } 
  
 while(inFile) 
 { 
  inFile >> sample.x >> sample.y >> sample.urchincount; 
  if (inFile) observations.AddTail(sample); 
 } 
 
 inFile.close();  
 
 
 cout << "Enter 1 to load the valid.asc grid outline (will be used for llx, lly, and 
resolution): \n"; 
 cin >> intdummy; 
 cout << " \n"; 
 
 inFile.open("valid.asc");         
 if(!inFile)          
      
 { 
  cout << "Error opening file\n"; 
  return nRetCode; 
 } 
 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> ncols; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> nrows; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> llx; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> lly; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> res; 



 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy; 
 inFile >> nodata; 
 
 validgrid.SetMatrixSize(CSize (ncols, nrows)); 
 
 
 for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++)   
   {  
    inFile >> doubledummy; 
    validgrid.SetAt(CPoint (j,i), doubledummy); 
   } 
  } 
 
 inFile.close();   
 
 
 gridA.SetMatrixSize(CSize (ncols,nrows)); 
 tempgrid.SetMatrixSize(CSize (ncols,nrows)); 
 mastergridA.SetMatrixSize(CSize (ncols,nrows)); 
  
 cout << "Please enter the size of the moving window (half the side in pixel): \n"; 
 cin >> windowsize; 
 cout << "\n"; 
 
 tau = (windowsize*res) + (res*0.5); 
 
 winarea = ((2*windowsize*res + res) * (2*windowsize*res + res)); 
 
 
 for (i=0;i<nrows;i++) 
 { 
  for (j=0;j<ncols;j++) 
  { 
   gridA.SetAt(CPoint (j,i),nodata); 
  } 
 } 
 
 
 POSITION pos = observations.GetHeadPosition(); 
 
 for (i=windowsize;i<(nrows-windowsize);i++) 
 { 



  for (j=windowsize;j<(ncols-windowsize);j++) 
  { 
 
   urchins = 0; 
   count = 0; 
 
   wincenterx = llx + j*res + 0.5*res; 
   wincentery = lly + nrows*res - (i*res + 0.5*res); 
   winllx = wincenterx - (0.5*res + windowsize*res); 
   winlly = wincentery - (0.5*res + windowsize*res); 
   winurx = wincenterx + (0.5*res + windowsize*res); 
   winury = wincentery + (0.5*res + windowsize*res); 
 
   pos = observations.GetHeadPosition(); 
 
   for (k=0;k<observations.GetCount();k++) 
   { 
    tempobs = observations.GetNext(pos); 
 
    if ((tempobs.x >= winllx) && (tempobs.x < winurx) && 
(tempobs.y >= winlly) && (tempobs.y < winury)) 
    { 
     d = sqrt(((wincenterx - tempobs.x)*(wincenterx - 
tempobs.x)) + ((wincentery - tempobs.y)*(wincentery - tempobs.y))); 
      
     if (d <= tau) 
     { 
      kf = (3/pi)*((1-((d/tau)*(d/tau)))*(1-
((d/tau)*(d/tau)))); 
             
      urchins = urchins + (kf * 
tempobs.urchincount); 
      count = count + kf; 
 
       
     } 
    }     
   } 
 
   if ((validgrid.GetAt(CPoint (j,i)) != nodata)) 
   { 
    if (count == 0) 
     gridA.SetAt(CPoint (j,i),nodata); 
 
    else 
     gridA.SetAt(CPoint (j,i),(urchins/count)); 



   } 
    
  } 
 } 
 
 
 
 cout << "Number of Samples per Strata: "; 
 cin >> n; 
 cout << "\n"; 
 
 cout << "Number of runs is set to 20"; 
 runs = 20; 
 cout << "\n"; 
 
 for (i=0;i<nrows;i++) 
 { 
  for (j=0;j<ncols;j++) 
  { 
   mastergridA.SetAt(CPoint (j,i), (gridA.GetAt(CPoint (j,i)))); 
  } 
 } 
 
 
 for (sampleloop=0;sampleloop<runs;sampleloop++) 
 { 
  filename = ""; 
  filename = int_to_string((sampleloop+1),filename); 
  filename = "sample_set" + filename + ".txt"; 
 
 
  for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++) 
   { 
    gridA.SetAt(CPoint (j,i), (mastergridA.GetAt(CPoint (j,i)))); 
   } 
  } 
 
 
  outFile.open(filename); 
  if(!outFile)          
  { 
   cout << "Error opening file\n"; 
   return nRetCode; 
  } 



 
 
  //Zone 1 
 
  llxwin = int((362383.06-llx)/res); 
  llywin = (nrows - int((4768863.7-lly)/res)); 
  urxwin = int((431450.46-llx)/res); 
  urywin = (nrows - int((4866671.22-lly)/res)); 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
 
         
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
 
    maxout = (maxout + 1); 
 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 1 did not contain enough valid data 
points!!! \n"; 
 
     i = n; 
    } 
   } 



  } 
 
 
 
  //Zone 2 
 
  llxwin = int((431450.46-llx)/res); 
  llywin = (nrows - int((4833354.37-lly)/res)); 
  urxwin = int((469027.7-llx)/res); 
  urywin = (nrows - int((4883055.12-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 200000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 2 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 



 
  //Zone 3 
 
  llxwin = int((469027.70-llx)/res); 
  llywin = (nrows - int((4849736.33-lly)/res)); 
  urxwin = int((499998.65-llx)/res); 
  urywin = (nrows - int((4916303.1-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 3 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 4 
 
  llxwin = int((499998.65-llx)/res); 



  llywin = (nrows - int((4866320.69-lly)/res)); 
  urxwin = int((535269.05-llx)/res); 
  urywin = (nrows - int((4940833.53-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 4 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 5 
 
  llxwin = int((535269.05-llx)/res); 
  llywin = (nrows - int((4871969.51-lly)/res)); 
  urxwin = int((561878.3-llx)/res); 
  urywin = (nrows - int((4940833.53-lly)/res)); 
 



 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 5 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 6 
 
  llxwin = int((561878.3-llx)/res); 
  llywin = (nrows - int((4905491.63-lly)/res)); 
  urxwin = int((587744.29-llx)/res); 
  urywin = (nrows - int((4940833.53-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 



   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 6 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 7 
 
  llxwin = int((587744.29-llx)/res); 
  llywin = (nrows - int((4905784.11-lly)/res)); 
  urxwin = int((617253.62-llx)/res); 
  urywin = (nrows - int((4950690.77-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 



    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 7 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 8 
 
  llxwin = int((617253.62-llx)/res); 
  llywin = (nrows - int((4917368.44-lly)/res)); 
  urxwin = int((662104.01-llx)/res); 
  urywin = (nrows - int((4963889.58-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 



    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 
     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 8 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  //Zone 9 
 
  llxwin = int((637903.62-llx)/res); 
  llywin = (nrows - int((4963889.58-lly)/res)); 
  urxwin = int((662104.01-llx)/res); 
  urywin = (nrows - int((4985552.27-lly)/res)); 
 
 
  for (i=0;i<n;i++) 
  { 
   data = false; 
   maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin)); 
 
   while (!data) 
   { 
    xsample = getrandom(llxwin,urxwin); 
    ysample = getrandom(urywin,llywin); 
     
    if (gridA.GetAt(CPoint (xsample,ysample)) != nodata) 
    { 
     outFile << (xsample*res+llx) << "\t" << ((nrows - 
ysample)*res+lly) << "\t"; 



     outFile << gridA.GetAt(CPoint (xsample,ysample)) 
<< "\n"; 
     gridA.SetAt(CPoint (xsample,ysample), 
double(nodata)); 
 
     data = true; 
    } 
 
    maxout = (maxout + 1); 
 
    if (maxout == 0) 
    { 
     data = true; 
     cout << "Zone 9 did not contain enough valid data 
points!!! \n"; 
     i = n; 
    } 
   } 
  } 
 
  outFile.close(); 
 
 } 
 
 
 
 for (sampleloop=0;sampleloop<runs;sampleloop++) 
 { 
  filename = ""; 
  filename = int_to_string((sampleloop+1),filename); 
  filename = "mean_result" + filename + ".asc"; 
 
 
  filename2 = ""; 
  filename2 = int_to_string((sampleloop+1),filename2); 
  filename2 = "sample_set" + filename2 + ".txt"; 
 
 
  while (!observations.IsEmpty()) 
  { 
   observations.RemoveTail(); 
  }    
 
  for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++) 



   { 
    tempgrid.SetAt (CPoint (j,i),nodata); 
   } 
  } 
 
   
  inFile.open(filename2);         
  if(!inFile)         
       
  { 
   cout << "Error opening file\n"; 
   return nRetCode; 
  } 
   
  while(inFile) 
  { 
   inFile >> sample.x >> sample.y >> sample.urchincount; 
   if (inFile) observations.AddTail(sample); 
  } 
 
  inFile.close(); 
 
 
  POSITION pos = observations.GetHeadPosition(); 
 
  for (i=windowsize;i<(nrows-windowsize);i++) 
  { 
   for (j=windowsize;j<(ncols-windowsize);j++) 
   { 
 
    urchins = 0; 
    count = 0; 
    
    wincenterx = llx + j*res + 0.5*res; 
    wincentery = lly + nrows*res - (i*res + 0.5*res); 
    winllx = wincenterx - (0.5*res + windowsize*res); 
    winlly = wincentery - (0.5*res + windowsize*res); 
    winurx = wincenterx + (0.5*res + windowsize*res); 
    winury = wincentery + (0.5*res + windowsize*res); 
 
    pos = observations.GetHeadPosition(); 
 
    for (k=0;k<observations.GetCount();k++) 
    { 
     tempobs = observations.GetNext(pos); 
 



     if ((tempobs.x >= winllx) && (tempobs.x < winurx) 
&& (tempobs.y >= winlly) && (tempobs.y < winury)) 
     { 
      d = sqrt(((wincenterx - 
tempobs.x)*(wincenterx - tempobs.x)) + ((wincentery - tempobs.y)*(wincentery - 
tempobs.y))); 
      
      if (d <= tau) 
      { 
       kf = (3/pi)*((1-((d/tau)*(d/tau)))*(1-
((d/tau)*(d/tau)))); 
       urchins = urchins + (kf * 
tempobs.urchincount); 
       count = count + kf; 
      } 
     }     
    } 
 
    if ((validgrid.GetAt(CPoint (j,i)) != nodata)) 
    { 
     if (count == 0) 
      tempgrid.SetAt(CPoint (j,i),nodata); 
 
     else 
      tempgrid.SetAt(CPoint (j,i),(urchins/count)); 
    } 
     
   } 
  } 
 
   
  outFile.open(filename); 
  if(!outFile)          
  { 
   cout << "Error opening file\n"; 
   return nRetCode; 
  } 
 
  outFile << "NCOLS " << ncols << "\n"; 
  outFile << "NROWS " << nrows << "\n"; 
  outFile << "XLLCORNER " << llx << "\n"; 
  outFile << "YLLCORNER " << lly << "\n"; 
  outFile << "CELLSIZE " << res << "\n"; 
  outFile << "NODATA_VALUE " << nodata << "\n"; 
 
   



  for (i=0;i<nrows;i++) 
   { 
    for (j=0;j<ncols;j++) 
    { 
     outFile << tempgrid.GetAt(CPoint (j,i)); 
     outFile << " "; 
    } 
 
    outFile << "\n"; 
  } 
 
  outFile.close(); 
 
 } 
 
 
 cout << "\n"; 
 cout << "The output is stored in 40 files: \n" << "    20 with sample locations and 
20 resulting averages"; 
 cout << "\n"; 
 cout << "enter 1 to finish\n"; 
 cin >> intdummy; 
 
 return nRetCode; 
} 
 
 
C++ computer code for generating plots of mean squared error (MSE) and mean 
MSE 

 
//Calculates MSE.  Arc ASCII gridA is the original density file, arc ASCII tempgrid is //the 
simulated density file, and arc ASCII grid B is the depth and habitat constraints 
 
 
#include "stdafx.h" 
#include "biomass.h" 
#include <fstream.h> 
#include "math.h" 
#include "Matrix.h" 
#include "Location.h" 
 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __FILE__; 



#endif 
 
 
 
 
CString int_to_string(int number, CString startstring) 
{ 
 bool done = false; 
 
 while (!done) 
 { 
  if ((number/10) < 1) 
  { 
   if (number == 0) 
    startstring = "0" + startstring; 
   if (number == 1) 
    startstring = "1" + startstring; 
   if (number == 2) 
    startstring = "2" + startstring; 
   if (number == 3) 
    startstring = "3" + startstring; 
   if (number == 4) 
    startstring = "4" + startstring; 
   if (number == 5) 
    startstring = "5" + startstring; 
   if (number == 6) 
    startstring = "6" + startstring; 
   if (number == 7) 
    startstring = "7" + startstring; 
   if (number == 8) 
    startstring = "8" + startstring; 
   if (number == 9) 
    startstring = "9" + startstring; 
    
   done = true; 
  } 
    
  if ((number/10) >= 1) 
  { 
   startstring = int_to_string((number-(int(number/10)*10)), 
startstring); 
   number = int(number/10); 
  } 
 } 
 
 return startstring; 



} 
 
 
///////////////////////////////////////////////////////////////////////////// 
// The one and only application object 
 
CWinApp theApp; 
 
//using namespace std; 
 
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 
{ 
 int nRetCode = 0; 
 
 // initialize MFC and print and error on failure 
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0)) 
 { 
  // TODO: change error code to suit your needs 
  cerr << _T("Fatal Error: MFC initialization failed") << endl; 
  return nRetCode = 1; 
 } 
/////////////////////////////////////////////////////////////////////////////// 
//////// MY CODE 
  
  
 ifstream inFile;  // Input data file. 
 ofstream outFile; // Output data file. 
 CMatrix gridA, tempgrid, result; 
 char chardummy; 
 int ncols, nrows; 
 int intdummy = 0, i, j, nodata=-9999; 
 double res, doubledummy, llx, lly; 
 CString filename; 
 int sampleloop; 
 double a, b, c; 
 
 
 gridA.Empty(); 
 tempgrid.Empty(); 
 
 int runs = 2; 
 
 cout << "Enter 1 to load gridA.asc (will be used for llx, lly, and resolution): \n"; 
 cin >> intdummy; 
 cout << " \n"; 
 



 inFile.open("gridA.asc");         
 if(!inFile)          
      
 { 
  cout << "Error opening file\n"; 
  return nRetCode; 
 } 
 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> ncols; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> nrows; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> llx; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> lly; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> res; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy; 
 inFile >> nodata; 
 
 gridA.SetMatrixSize(CSize (ncols, nrows)); 
 
 
 for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++)   
   {  
    inFile >> doubledummy; 
    gridA.SetAt(CPoint (j,i), doubledummy); 
   } 
  } 
 
 inFile.close();   
 
 
 tempgrid.SetMatrixSize(CSize (ncols,nrows)); 
 result.SetMatrixSize(CSize (ncols,nrows)); 
 



 
 for (i=0;i<nrows;i++) 
   { 
    for (j=0;j<ncols;j++)   
    {  
     result.SetAt(CPoint (j,i), 0.0); 
    } 
   } 
 
 
 
 for (sampleloop=0;sampleloop<runs;sampleloop++) 
 { 
 
  filename = ""; 
  filename = int_to_string((sampleloop+1),filename); 
  filename = "mean_result" + filename + ".asc"; 
 
 
  inFile.open(filename);         
  if(!inFile)         
       
  { 
   cout << "Error opening file\n"; 
   return nRetCode; 
  } 
 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
  inFile >> intdummy; 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
  inFile >> intdummy; 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
  inFile >> doubledummy; 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
  inFile >> doubledummy; 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy; 
  inFile >> doubledummy; 
  inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy; 
  inFile >> intdummy; 



 
   
  for (i=0;i<nrows;i++) 
   { 
    for (j=0;j<ncols;j++)   
    {  
     inFile >> doubledummy; 
     tempgrid.SetAt(CPoint (j,i), doubledummy); 
    } 
   } 
 
  inFile.close(); 
 
 
   
  for (i=0;i<nrows;i++) 
   { 
    for (j=0;j<ncols;j++)   
    {  
     if (tempgrid.GetAt(CPoint (j,i)) != nodata) 
     { 
      a = tempgrid.GetAt(CPoint (j,i)); 
      b = gridA.GetAt(CPoint (j,i)); 
      c = (b-a)*(b-a); 
      c = c + result.GetAt(CPoint (j,i)); 
      result.SetAt(CPoint (j,i), c); 
     } 
    } 
   } 
 
 } 
 
 for (i=0;i<nrows;i++) 
   { 
    for (j=0;j<ncols;j++)   
    {  
     if (result.GetAt(CPoint (j,i)) != nodata) 
     { 
      a = (result.GetAt(CPoint (j,i))/runs); 
      result.SetAt(CPoint (j,i), a); 
     } 
    } 
   } 
  
 
 outFile.open("output.asc"); 



 if(!outFile)          
 { 
  cout << "Error opening file\n"; 
  return nRetCode; 
 } 
 
 outFile << "NCOLS " << ncols << "\n"; 
 outFile << "NROWS " << nrows << "\n"; 
 outFile << "XLLCORNER " << llx << "\n"; 
 outFile << "YLLCORNER " << lly << "\n"; 
 outFile << "CELLSIZE " << res << "\n"; 
 outFile << "NODATA_VALUE " << nodata << "\n"; 
 
   
 for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++) 
   { 
    outFile << result.GetAt(CPoint (j,i)); 
    outFile << " "; 
   } 
 
   outFile << "\n"; 
  } 
 
 outFile.close(); 
 
 
 cout << "\n"; 
 cout << "The output is stored in output.asc"; 
 cout << "\n"; 
 cout << "enter 1 to finish\n"; 
 cin >> intdummy; 
 
 return nRetCode; 
} 
 
 
/* 
 
 tempgrid.Empty();    // open and read grid 
 
 
 inFile.open("somegrid.txt");         
 if(!inFile)          
      



 { 
  cout << "Error opening file\n"; 
  return nRetCode; 
 } 
 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> intdummy; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy; 
 inFile >> intdummy; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> doubledummy; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> doubledummy; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy; 
 inFile >> doubledummy; 
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >> 
chardummy >> chardummy >> chardummy; 
 inFile >> intdummy; 
 
  
 for (i=0;i<nrows;i++) 
  { 
   for (j=0;j<ncols;j++)   
   {  
    inFile >> doubledummy; 
    tempgrid.SetAt(CPoint (j,i), doubledummy); 
   } 
  } 
 
 inFile.close();   
 
 
*/ 
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	Figure 4.2. Flowchart of simulation approach to estimate the variance associated with a sampling strategy for the Maine sea urchin fishery.





	Figure 4.8. Mean squared error (MSE) for stratified random sampling strategies with equal strata width using 90 samples.  The dashed line represents the MSE for the original sampling strategy with 90 sites, 10 in each of the 9 unequally sized strata.
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