

A simulation framework for developing optimal

sampling strategies for the Maine sea urchin stock

A report submitted to the Northeast Consortium

and Maine Department of Marine Resources

Computer simulation work is funded by the Northeast Consortium Program
Development fund (Gant #: 02-628)

Field sampling and data collection are partially funded by a DMR Marine

Science Graduate fellowship (Grant #: G601240)

by

Robert Grabowski1,a, Yong Chena,c, Robert Russellb, and Margaret Hunterb

a School of Marine Sciences, University of Maine, Orono, ME 04469

b The Maine Dept. of Marine Resources, West Boothbay Harbor, Maine

c Contact: ychen@maine.edu; Tel: (207) 581-4303; Fax: (207) 581-4388

May 14, 2003

1 This report consists of part of MS thesis of Robert Grabowski

Executive summary

Fishery-independent surveys are scientific studies that provide essential

information for stock assessments and for developing appropriate management plans. Pilot

studies are conducted prior to the start of a survey program, to gain information about the

spatial distribution of the stock in order to optimize the survey. A pilot study for the

annual fishery-independent survey program for the green sea urchin fishery was initialized

in Maine in the summer of 2001. The pilot study was extensive, time-consuming and

costly, and needed to be optimized to ensure its feasibility as a long-term scientific survey.

The high degree of spatial variability in sea urchin abundance, however, prevented us from

using standard optimization techniques, such as traditional statistics or even geostatistics.

Kernel estimation and computer simulations were used to characterize the large-scale

spatial density structure of the sea urchin population and investigate how different

sampling strategies effected realizations of the density structure. Since realizations of the

large-scale density structure are the vital components of the sea urchin stock assessment

(Chapter 3), any changes in this structure would dramatically alter the outcome of the

assessment. Therefore, we defined an optimal sampling strategy as a design that produces

realizations of the large-scale spatial structure that are similar to the original population

while using less sampling intensity than the original sampling strategy. Using the original

survey strategy, a reduction of sampling intensity to 10 sites per strata, or 90 total sites,

was optimal because it corresponded to a large decrease in effort but only a marginal

decrease in precision. However, a regular sampling strategy, with approximately 90 grids

arranged along the coastline, provided the highest precision for the green sea urchin fishery

when analyzed solely with spatial statistics. Considering that the sea urchin data will be

analyzed by traditional and spatial statistics, we believe that the original stratified random

sampling design reduced to 10 locations per strata is the most sensible optimization for the

Maine green sea urchin fishery-independent survey program at this time.

Introduction

Fishery-independent surveys are scientific studies designed to provide biological

and ecological information on a fish stock (Hilborn and Walters 1992; Jennings 2001).

They can generate high quality data, with small variances and biases, which are

representative of the entire targeted fish population. Stock assessments based on fishery-

independent data have less uncertainty and bias than ones based on fishery-dependent data,

which are generated from normal fishing activities. Therefore, fishery-independent

surveys are essential for stock assessments and for developing appropriate management

plans (Hilborn and Walters 1992). To establish an effective fishery-independent survey

program, pilot studies should be conducted prior to the start of the survey program in order

to gain information about the spatial distribution of the stock and to identify environmental

variables that influence this distribution. The pilot study is then redesigned, or optimized,

based on the information collected and on the future analysis plan (Andrew and Mapstone

1987; Kitsiou et al. 2001). According to Andrew and Mapstone (1987), “Optimization of

the design of sampling programmes is achieved by determining the most efficient

allocation of resources-i.e., minimizing decreases in precision and/or resolution imposed

by cost or by logistical constraints.”

A pilot study for an annual fishery-independent survey program was initialized in

the summer of 2001 for the green sea urchin fishery in Maine. The pilot study was

designed and implemented to provide detailed information on the population structure,

spatial variability and biological/ecological characteristics of the sea urchin stock along the

coast of Maine. The pilot study was extensive, time-consuming and costly, and could not

be maintained for the annual survey. Therefore, the pilot study needs to be optimized to

reduce the cost while maintaining high precision and accuracy of the annual survey.

Many statistical techniques have been developed to optimize sampling programs,

including traditional experimental design, geostatistics and Monte Carlo computer

simulation (Cochran 1977; Rivoirard 2000; Petitgas 2001). Traditional statistical methods

are primarily based on random sampling and optimization usually involves stratification of

the study area based on the spatial structure of the stock (Cochran 1977; Hilborn and

Walters 1992). The study area is divided into smaller regions, or strata, using variables

that influence the spatial structure of the stock, such as depth or habitat, in order to increase

sampling precision and accuracy. Optimization with traditional statistics is limited,

though, because these methods assume that the fish stock is distributed randomly over the

study area or strata. Truly random distribution in a fished stock is rare, however, most

stocks exhibit spatial patterns or dependence, also known as spatial heterogeneity. A

different branch of statistics, known as spatial statistics, is specifically designed to

investigate the spatial distribution of a stock and can be used for survey design

optimization.

Spatial statistics or spatial analyses are employed to model first and second-order,

or large and small-scale, spatial variability of a variable, such as fish abundance, in order to

estimate the value at unobserved locations (Bailey and Gatrell 1995; Petitgas 2001).

Intrinsic second-order methods have become the most popular geostatistical tools and the

kriging variance, or mean square prediction error, can been used to compare survey

designs for optimizing fishery surveys (Pelletier and Parma 1994; Rivoirard et al. 2000;

van Groenigen 2000; Petitgas 2001). Two assumptions must be met in order to use

intrinsic geostatistical methods. First, the spatial distribution of the stock cannot be

affected by the geometry of the region, i.e. the spatial distribution cannot differ near the

borders of the zone (Petitgas 1993; Bailey and Gatrell 1995; Warren 1998; Rivoirard et al

2000). Second, the process must exhibit some degree of second-order stationarity, or

spatial dependence, which means that small-scale deviations in variables are similar in

neighboring sites. In chapter 3, the suitability of the green sea urchin data for analysis with

intrinsic geostatistics was addressed. The data did not satisfy the assumptions, especially

for stationarity; the sea urchin data are too highly skewed and spatially variable. Since the

assumptions are violated, we must use other spatial analysis techniques to characterize the

spatial variability of the stock (Bailey and Gatrell 1995; Warren 1998; Petitgas 2001). .

Several spatial analysis techniques are available for investigating the large-scale

variations in fish stock abundance (Bailey and Gatrell 1995). For example, in Chapter 3,

triangulated irregular networks (TINs) were used to estimate exploitable biomass for the

green sea urchin fishery. TINs are good estimators of large-scale spatial patterns but

require relatively evenly spaced sampling locations; its performance decreases when

sampling locations become clustered (ESRI 1998; Guan et al 1999). Kernel estimation is

an advanced form of weighted spatial moving averages that can be used with any type of

sampling strategy: random, clustered or grids (Bailey and Gatrell 1995). It does not

require any major assumptions nor does it require complex statistical decisions or

modeling. Therefore, kernel estimation is used to estimate the large-scale patterns in sea

urchin stock abundance, but since it does not incorporate a variance structure, it cannot be

directly used for sample design optimization.

Kernel estimation paired with computer simulations may provide the framework

necessary for optimizing survey programs. Computer simulation approaches have been

increasingly used in fisheries due to their ability to incorporate different sources of

variations, especially spatial and temporal heterogeneity (e.g. Hilborn and Walters 1987;

Horppila and Peltonen 1992; Andrew and Chen 1997). A simulation approach allows

researchers to investigate how uncertainty in the spatial structure of a fished stock can

affect survey programs and stock assessments. Sampling programs based on random

sampling theory can have countless realizations, and the precision of one realization may

not represent the precision of the sampling program. Simulations allow us to produce

multiple realizations and estimate the mean precision of a sampling strategy.

The objective of this project is to develop a framework that incorporates spatial

statistics and computer simulations to identify an optimum sampling strategy. An optimal

sampling strategy should provide the most accurate and precise information on a stock, as

possible. Since we are using spatial statistics, we are most interested in the large-scale

spatial structure of sea urchin density. The combination of kernel estimation and computer

simulation allows us to estimate the large-scale spatial density structure and determine how

different sampling strategies effect realizations of this structure. Since these realizations

are the vital components of the sea urchin stock assessment , any changes in these

structures would dramatically alter the outcome of the assessment. Therefore, we define

an optimal sampling strategy as a design that produces realizations of the large-scale

spatial structure that are similar to the original population while using less sampling

intensity than the original sampling strategy.

Materials and Methods

Urchin density and size frequency information were obtained from the 2001 pilot

study for the State’s annual fishery independent survey. The Department of Marine

Resources employed a stratified random sampling design, where 16 sites were sampled in

each of 9 strata along the Maine coast exclusively in potential urchin habitat (rock or

gravel substrate) (Figure 1). To minimize the sample variances within the strata, the width

of each stratum was inversely proportional to the commercial landings in the region. At

each site, 90 quadrats (1m2) were randomly sampled along a linear transect set

perpendicular to shore using SCUBA. All urchins within the quadrat were counted and

test diameter was measured. Sampling intensity was equally divided over three depth

zones: 0-5m, 5-10m, and 10-15m. Mean site densities were calculated, as were mean site

densities by depth zones to allow each depth stratum to be analyzed separately.

A simulation framework was developed to test the ability of different sampling

programs to recreate the large-scale spatial structure of the sea urchin population (Figure

4.2.). Mean sea urchin densities by depth zone, as well as bathymetry and suitable urchin

substrate data, were the initial inputs for the framework. Kernel estimation was used to

estimate the large-scale variations in the green sea urchin stock by depth zone (Bailey and

Gatrell 1995). The kernel estimate for mean urchin density at a location is calculated as

(1)
∑

∑

=

=

−

−

= n

i

i

n

i
i

i

ssk

yssk

1

1

)(

)(
ˆ

τ

τµτ ,

where µ̂ τ is the mean urchin density; k is the kernel, or bivariate probability function; s is

the location (x,y) where the urchin density is being estimated; si are the locations where the

urchin densities were sampled; τ is the bandwidth, or the radius of the moving window;

and yi is the urchin density. The study area was converted into an ASCII raster image

(1500 x 1178 pixels, pixel=236.93 m) and weighted averages were computed for every

pixel based on a quartic kernel. A bandwidth, in pixels, was selected to minimize error and

ensure adequate coverage and smoothness. The kernel estimation technique produced

plots of smoothed urchin densities by depth zone. These plots were modified to only

include areas of the rock/gravel substrate, in effect producing spatial representations of the

population density structure (Figure 4.3). These original density plots were used to test

different sampling strategies and gauge their relative performance. The sampling strategies

varied based on the number of sites and number and size of strata, allowing us to test the

following survey designs: random, stratified random with equal strata width, and stratified

random with strata based on the original survey design (Table 4.1.). These sampling

designs were chosen because they were feasible for the program and are routinely used in

fishery surveys. Resampling was conducted randomly within the potential urchin habitat

in the appropriate depth zone, producing sets of urchin densities by location. New urchin

density plots were created from these observations using the kernel estimation technique.

The number of simulations was limited to 50 due to restraints placed on computing power

imposed by the large size of the files.

The performance of a sampling strategy was evaluated using mean squared error

(MSE). The MSE has been used to determine optimal sampling strategies for fisheries and

is calculated as

(2)
N

QQ
QMSE

N

N
OS∑

=

−
= 1

2)(
)(,

where QO is the stock density value from the original density plot, QS is the stock

density value from the sampled plot, and N is the number of simulations (Cochran 1977;

Guan et al. 1999). MSE was calculated for each pixel in the urchin density plots

(n=1,767,000), creating a plot of MSE for each sampling strategy. A mean MSE value was

calculated for each plot from the pixel MSE values to facilitate selection of an optimal

sampling strategy. An optimal sampling strategy is a design that minimizes mean MSE

while using less sampling intensity than the original pilot study.

Results

The first kernel estimation step produced the original density plots, which

characterizes the large-scale spatial variations in the sea urchin stock (Figure 4.3.). After

implementing a sampling strategy, the second kernel estimation step created the sampled

density plots (Figure 4.4.). Finally, plots of MSE were created for each scenario by

calculating MSE per pixel (Figure 4.5.).

The stratified random strategy from the pilot study was tested using the 3 depth

zone datasets and an average site dataset. MSE values for depth zone 1, 0-5 m, were

considerably higher than the other datasets (Figure 4.6.). This result suggested that depth

zone 1 had the highest spatial variability, so recreations of the large-scale variations in

urchin density were the least precise. This dataset was used in all subsequent analyses

because it is the most variable urchin density structure; it represents a worst-case scenario.

A reduction of sampling intensity to 10 sites per strata, or 90 total sites, corresponded to a

large decrease in effort but only a marginal decrease in precision (Figure 4.6.). MSE at a

sampling intensity of 90 sites was used as a reference point for comparison between

sampling strategies.

None of the tested sampling strategies had consistently lower MSE values than the

original pilot study design, over all sampling intensities (Figure 4.7.). At low sampling

intensities (less than 27 sites) random sampling had the lowest MSE. At greater than 27

sites, the original survey had the lowest MSE values over the majority of sampling

locations. However, when sampling intensity was set at 90 sites, MSE values for the

stratified random strategies with equal strata width dropped below the original survey

design at higher levels of stratification.

At 90 sites, sampling strategies with greater than 9 equal sized strata had lower

MSEs than the original survey design (Figure 4.8.). MSE values decreased with increasing

stratification, reaching a minimum at 45 strata with 2 sampling locations. The original

survey strategy performed better, with 90 sites, than random sampling (1 strata) and all

stratified random strategies with less than 9 equal sized strata.

Discussion

In optimization studies, we assume that the population was oversampled so the data

collected is representative of the entire population. We believe that this assumption is

valid for the 2001 pilot study for the green sea urchin fishery-independent survey;

therefore we can legitimately optimize the survey. We defined an optimal sampling

strategy as a design that produces realizations of the large-scale spatial structure that are

similar to the original population while using less sampling intensity than the original

sampling strategy. Within the original survey design, MSE quickly decreased and leveled

off as sampling intensity increased (Figure 4.6.). We chose 90 sites as a reference point for

this sampling strategy because it corresponded to a large decrease in sampling effort, a

marginal increase in MSE and was buffered from the high MSE values at lower sampling

intensities. When comparing amongst other sampling designs, however, the original

sampling strategy did not have the lowest MSE.

In our study, the stratified random strategy with equal strata width had comparable

or higher precisions than the original stratified random strategy. In particular, sampling

strategies with more than 9 equal sized strata had considerably lower MSE values than the

original sampling strategy (Figure 4.8.). Interestingly, MSE decreased further with added

stratification. The high levels of stratification most likely caused this increase in precision.

As the number of strata increased, and correspondingly the number of sampling locations

per strata decreased, the sampling strategy more closely resembled a regular, or grid,

sampling strategy. Grids have long been considered ideal sampling strategies for analysis

with spatial statistics (Haining 1990, Rivoirard et al. 2000; Petitgas 2001). In fact, as long

as the spatial process is not periodic, grids are the preferred option (Haining 1990; Simard

et al. 1992). Accordingly, a regular sampling strategy, with 90 grids arranged along the

coastline, would provide the highest precision for the green sea urchin fishery when

analyzed with spatial statistics.

Currently the green sea urchin fishery is not analyzed solely with spatial statistics,

though. Fishable biomass was estimated with spatial statistics (Chapter 3), while stock

assessments (Chen and Hunter 2003) and investigations into biological reference points

(Chapter 1) have been conducted using fisheries population dynamics and computer

simulation techniques. Therefore, the optimal sampling strategy not only needs to satisfy

the original criteria, i.e. minimizing decreases in precision while reducing sampling

intensity, but, additionally, must be suitable to the future analysis plans (Andrew and

Mapstone 1987). A regular sampling strategy may be the preferred design for analyzing

the sea urchin stock with spatial statistics but it is not preferred for traditional statistics.

When used with traditional statistics, regular sampling strategies can yield greater

precision, but estimates are usually biased and sample variance cannot be directly

estimated from the samples (Cochran 1977: Hilborn and Walters 1992). Conversely,

stratified random sampling strategies are appropriate for both traditional statistics and

spatial statistics. In traditional statistics, stratified random strategies have greater precision

than random designs if the variance of a variable per strata is less than the overall variance

(Hilborn and Walters 1992). In spatial statistics, stratified random strategies can have

lower variances than random and grid designs, especially if there is a spatial trend (Haining

1990). So, a careful designed stratified random strategy, where strata size reduces

sampling variance, would be more flexible for analysis than a regular sampling strategy.

An optimal sampling strategy must balance many factors, ranging from logistics

and cost, to precision and analysis techniques. We believe that the original stratified

random sampling strategy with reduced sites per strata is the best compromise and a

sensible optimization for the Maine green sea urchin fishery-independent survey program

at this time. Further simulation work on optimization should continue in order to

investigate different sampling designs using more simulations.

Acknowledgement

We would like to thank the support by the Northeast Consortium, Maine

Department of Marine Resources, and Maine Sea Urchin Zone Council. Discussions with

Dr. Robert Vadas, Dr. Larry Harris, and Dr. Linda Mercer are very helpful.

REFERENCES

Andrew NL, Chen Y. 1997. Optimal sampling for estimating the size structure and mean

size of abalone caught in a New South Wales fishery. Fishery Bulletin 95:403-413.

Andrew NL, Mapstone BD. 1987. Sampling and the description of spatial pattern in

marine ecology. Barnes M, editor. Aberdeen, U.K.: Aberdeen University Press. 39-

90 p.

Bailey T, Gatrell A. 1995. Interactive Spatial Data Analysis. Essex, England: Pearson

Education. 413 p.

Chen Y, Hunter M. 2003. Assessing the green sea urchin (Strongylocentrotus

droebachiensis) stock in Maine, USA. Fisheries Research 60:527-537

Cochran, WG. 1977. Sampling Techniques. New York: John Wiley. 428 p.

Environmental Systems Research Institute, Inc. (ESRI). 1998. ARC/INFO Version 7.2.1.

Redlands, CA.

Guan W, Chamberlain RH, Sabol BM, Doering PH. 1999. Mapping Submerged Aquatic

Vegetation with GIS in the Caloosahatchee Estuary: Evaluation of Different

Interpolation Methods. Marine Geodesy. 22(2):69-92.

Haining R. 1990. Spatial Data Analysis in the Social and Environmental Sciences.

Cambridge: Cambridge University Press.

Hilborn R, Walters C. 1987. A general model for simulation of stock and fleet dynamics in

spatially heterogeneous fisheries. Canadian Journal of Fisheries and Aquatic

Sciences 44:1366-1369.

Hilborn R, Walters CJ. 1992. Quantitative fisheries stock assessment: Choice, dynamics

and uncertainty. New York: Chapman and Hall. 570 p.

Horppila J, Peltonen H. 1992. Optimizing sampling from trawl catches: contemporaneous

multistage sampling for age and length structures. Canadian Journal of Fisheries

and Aquatic Sciences 49:1555-1559.

Jennings S, Kaiser M, Reynolds JD. 2001. Marine Fisheries Ecology. Oxford: Blackwell

Science. 417p.

Kelley JT, Barnhardt WA, Belknap DF, Dickson SM, Kelley AR. 1999. The seafloor

revealed. Maine Geological Survey. 55 p.

Kitisiou D, Tsirtsis G, Karydis M. 2001. Developing an optimal sampling design: A case

study in coastal marine ecosystem. Environmental Monitoring and Assessment.

71:1-12.

Pelletier D, Parma AM. 1994. Spatial distribution of Pacific halibut (Hippoglossus

stenolepis): An application of geostatistics to longline survey data. Canadian

Journal of Fisheries and Aquatic Sciences 51(7):1506-1518.

Petitgas P. 1993. Geostatistics for fish stock assessments: A review and an acoustic

application. ICES Journal of Marine Science 50(3):285-298.

Petitgas P. 2001. Geostatistics in fisheries survey design and stock assessment: Models,

variances and applications. Fish & Fisheries Series 2(3):231-249.

Rivoirard J, Simmonds J, Foote KG, Fernandes P, Bez N. 2000. Geostatistics for

estimating fish abundance. Oxford: Blackwell Science. 206 p.

Simard Y, Legendre P, Lavoie G, Marcotte D. 1992. Mapping, estimating biomass, and

optimizing sampling programs for spatially autocorrelated data: Case study of the

northern shrimp (Pandalus borealis). Canadian Journal of Fisheries and Aquatic

Sciences 49(1):32-45.

van Groenigen JW. 2000. The influence of variogram parameters on optimal sampling

schemes for mapping by kriging. Geoderma 97:223-236

Warren WG. 1998. Spatial analysis for marine populations: factors to be considered. In:

Jamieson GS, Campbell A, editors. Proceedings of the North Pacific Symposium

on Invertebrate Stock Assessment and Management: Canadian Special Publication

of Fisheries and Aquatic Science p 21-28.

Table 4.1. Summary of the sampling strategies evaluated in this study.

Sampling strategy Number of strata Sites per strata

Original Stratified Random

Strata width dependent on

landings

9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16

Random 1 10, 20, 30, 40, 50, 60, 70, 80,

90, 100, 110, 120, 130, 140,

150

Stratified Random

Equal strata width

2 6, 12, 18, 24, 30, 36, 42, 48,

54, 60, 66, 72

 3 4, 8, 12, 16, 20, 24, 28, 32, 36.

40, 44, 48

 4 3, 6, 9, 12, 15, 18, 21, 24, 27,

30, 33, 36

 5 3, 6, 9, 12, 15, 18, 21, 24, 27,

30

 6 2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24

 7 2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22

 8 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18

Table 4.1. Contd

Sampling strategy Number of strata Sites per strata

Stratified Random

Equal strata width

9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16

 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15

 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14

 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12

 15 6

 18 5

 30 3

 45 2

 90 1

For the stratified random strategies with equal strata width, strata are defined as
equal subdivisions of the coast along an east-west axis.

#S#S
#S#S
#S
#S
#S#S
#S#S#S#S
#S#S#S

#S#S#S#S#S

#S#S#S
#S#S

#S
#S

#S
#S#S#S
#S#S

#S
#S
#S#S#S

#S
#S
#S#S#S#S#S #S

#S#S#S#S#S

#S#S
#S#S

#S

#S#S#S#S#S#S#S

#S
#S#S#S
#S#S#S#S#S#S#S#S #S#S#S

#S

#S#S
#S #S#S#S#S#S#S#S#S

#S#S#S
#S#S#S#S#S#S #S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S
#S#S#S#S#S#S

#S#S#S#S#S
#S#S#S#S
#S#S#S#S#S

#S#S#S#S#S#S#S#S#S#S#S#S

30 0 30 60 90 Miles

N

EW

S

550000

550000

560000

560000

570000

570000

580000

580000

590000

590000

600000

600000

610000

610000

4900000 4900000

4910000 4910000

4920000 4920000

4930000 4930000

4940000 4940000

D1.txt
#S 0 - 5.63
#S 5.63 - 16.8

#S 16.8 - 32.8

#S 32.8 - 74.63

#S 74.63 - 146.53

9

8
7

6

5
4

3
2

1

Figure 4.1. Mean urchin densities (urchins m-2) for the 0-5 m depth zone from the 2001

pilot study. Strata from the original stratified random strategy are labeled.

Compare

Original with

each New Plot
Repeat

Kernel

Estimation

Kernel

Estimation

Sample

Density

Plot

Survey

Data

Mean Error

Plot of MSE
New

Density

Plot

Figure 4.2. Flowchart of simulation approach to estimate the variance associated with

a sampling strategy for the Maine sea urchin fishery.

Origplot1
0 - 6.763
6.763 - 13.527
13.527 - 20.29
20.29 - 27.053
27.053 - 33.816
33.816 - 40.58
40.58 - 47.343
No Data

10 0 10 20 30 Miles

N

EW

S

550000

550000

560000

560000

570000

570000

580000

580000

590000

590000

600000

600000

610000

610000

4900000 4900000

4910000 4910000

4920000 4920000

4930000 4930000

4940000 4940000

Figure 4.3. Original density plot characterizing the large-scale spatial variations in

stock for density (urchins m-2) depth zone 1 (0-5m) in areas west of Mt. Desert Island.

Sampplot5
0 - 6.763
6.763 - 13.527
13.527 - 20.29
20.29 - 27.053
27.053 - 33.816
33.816 - 40.58
40.58 - 47.343
No Data

10 0 10 20 30 Miles

N

EW

S

550000

550000

560000

560000

570000

570000

580000

580000

590000

590000

600000

600000

610000

610000

4900000 4900000

4910000 4910000

4920000 4920000

4930000 4930000

4940000 4940000

Figure 4.4. One simulation of a sample density plot (urchins m-2) created by sampling the

original density plot with the original stratified random design using 10 sites per strata in

areas west of Mt. Desert Island.

Mse
-1 - 0 Std. Dev.
Mean
0 - 1 Std. Dev.
1 - 2 Std. Dev.
2 - 3 Std. Dev.
> 3 Std. Dev.
No Data

10 0 10 20 30 Miles

N

EW

S

550000

550000

560000

560000

570000

570000

580000

580000

590000

590000

600000

600000

610000

610000

4900000 4900000

4910000 4910000

4920000 4920000

4930000 4930000

4940000 4940000

Figure 4.5. Plot of MSE for the original stratified random design using 10 sites per strata in

areas west of Mt. Desert Island. Mean MSE is 2.90.

0

2

4

6

8

10

12

14

0 5 10 15

Number of sites per strata

M
ea

n
M

SE
0-5m
5-10m
10-15m
All Depths

Figure 4.6. Mean squared error (MSE) as a function of the number of sites sampled per

strata, using the original survey design by depth zone. The dashed line represents 90

sampling locations, 10 sites in each of 9 strata, which was used for comparisons amongst

different sampling strategies.

2

4

6

8

10

12

14

0 50 100 150

Number of sites

M
ea

n
M

SE

Strat Rand
Random
3 strata
6 strata
9 strata
12 strata

Figure 4.7. Mean squared error (MSE) as a function of the number of sites for the original

stratified random sampling strategy (Strat Rand), random sampling, and stratified random

sampling with equal strata width (3-12 strata) for depth zone 1 using the simulation

framework approach.

2.4

2.6

2.8

3

3.2

3.4

3.6

0 20 40 60 80 1

Number of Strata

M
ea

n
M

SE

00

Figure 4.8. Mean squared error (MSE) for stratified random sampling strategies with equal

strata width using 90 samples. The dashed line represents the MSE for the original

sampling strategy with 90 sites, 10 in each of the 9 unequally sized strata.

 Appendix

PROCEDURE AND COMPUTER CODE FOR IDENTIFYING OPTIMAL

SAMPLING STRATEGIES

Procedure for identifying optimal sampling strategies

1. Create a text file of fish densities by location. Place the x coordinate in the first

column, the y coordinate in the second column and the density value in the third

column. Do not include column headings in the text file.

2. Create an ArcASCII template file. This file indicates what regions have suitable

habitat and potential fish abundance. The sampling program will be limited to

these regions. Note: a buffer zone should be created around the region of interest in

valid.asc. The width of the buffer zone should be equal to or greater than the size

of the moving window (kernel).

a. The file can be created directly in an ASCII format or it can be converted

from other spatial formats, such as shapefiles, TINs, and grids, using the

ArcToolbox program from ArcInfo 7.1.

3. Rename the urchin density text file “obs.txt” and the template ASCII to “valid.asc.”

and the bathymetry ASCII to “gridC.asc.” Place these files in the same folder as

the C++ kernel estimation program.

4. Run the C++ kernel estimation program. Follow the directions on the program.

Note: The C++ code is designed for a stratified random strategy with a set number

and size for the strata. The “Size of the moving window” is the kernel length and is

equivalent to the radius of a circle in pixels. We recommend limiting the number

of simulations because the ArcASCII files can be very large.

5. When the program terminates, enter 1. Then run the C++ mean squared error

(MSE) estimation program. The program will output the mean MSE and create an

ASCII file of MSE.

C++ computer code for kernel estimation and implementation of a stratified random
sampling strategy

// biomass.cpp : calculates biomass of an arc ascii grid A based on constraints
//
 definde by an arc ascii grid B.

#include "stdafx.h"
#include "biomass.h"
#include <fstream.h>
#include "math.h"
#include "Matrix.h"
#include "Location.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

 // Macro to get a random integer with a specified range
 #define getrandom(min, max) \
 ((rand()%(int)(((max) + 1)-(min)))+ (min))

CString int_to_string(int number, CString startstring)
{
 bool done = false;

 while (!done)
 {

 if ((number/10) < 1)
 {
 if (number == 0)
 startstring = "0" + startstring;
 if (number == 1)
 startstring = "1" + startstring;
 if (number == 2)
 startstring = "2" + startstring;
 if (number == 3)
 startstring = "3" + startstring;
 if (number == 4)
 startstring = "4" + startstring;
 if (number == 5)
 startstring = "5" + startstring;
 if (number == 6)
 startstring = "6" + startstring;
 if (number == 7)
 startstring = "7" + startstring;
 if (number == 8)
 startstring = "8" + startstring;
 if (number == 9)
 startstring = "9" + startstring;

 done = true;
 }

 if ((number/10) >= 1)
 {
 startstring = int_to_string((number-(int(number/10)*10)),
startstring);
 number = int(number/10);
 }
 }

 return startstring;
}

///
// The one and only application object

CWinApp theApp;

//using namespace std;

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])

{
 int nRetCode = 0;

 // initialize MFC and print and error on failure
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
 {
 // TODO: change error code to suit your needs
 cerr << _T("Fatal Error: MFC initialization failed") << endl;
 return nRetCode = 1;
 }
///
//////// MY CODE

 ifstream inFile; // Input data file.
 ofstream outFile; // Output data file.
 CMatrix gridA, mastergridA, tempgrid, validgrid;
 char chardummy;
 int ncols, nrows, urxwin, urywin, xsample, ysample;
 int intdummy = 0, i, j, k, nodata=-9999, n, max=0, min=0, maxout, runs=0;
 double res, doubledummy, urchins, tau, kf, d;
 bool data;
 CLocation sample, tempobs;
 CList<CLocation,CLocation&> observations;
 CString filename, filename2;

 double llx, lly, llxwin, llywin, count;
 double winllx, winlly, winurx, winury, winarea;
 int windowsize, sampleloop;
 double wincenterx, wincentery;

 const pi=3.141592653589793;

 cout << "Enter 1 to load observations (obs.txt):";
 cin >> intdummy;
 cout << "\n";

 gridA.Empty();
 tempgrid.Empty();
 validgrid.Empty();
 mastergridA.Empty();

 inFile.open("obs.txt");

 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 while(inFile)
 {
 inFile >> sample.x >> sample.y >> sample.urchincount;
 if (inFile) observations.AddTail(sample);
 }

 inFile.close();

 cout << "Enter 1 to load the valid.asc grid outline (will be used for llx, lly, and
resolution): \n";
 cin >> intdummy;
 cout << " \n";

 inFile.open("valid.asc");
 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> ncols;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> nrows;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> llx;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> lly;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> res;

 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy;
 inFile >> nodata;

 validgrid.SetMatrixSize(CSize (ncols, nrows));

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 inFile >> doubledummy;
 validgrid.SetAt(CPoint (j,i), doubledummy);
 }
 }

 inFile.close();

 gridA.SetMatrixSize(CSize (ncols,nrows));
 tempgrid.SetMatrixSize(CSize (ncols,nrows));
 mastergridA.SetMatrixSize(CSize (ncols,nrows));

 cout << "Please enter the size of the moving window (half the side in pixel): \n";
 cin >> windowsize;
 cout << "\n";

 tau = (windowsize*res) + (res*0.5);

 winarea = ((2*windowsize*res + res) * (2*windowsize*res + res));

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 gridA.SetAt(CPoint (j,i),nodata);
 }
 }

 POSITION pos = observations.GetHeadPosition();

 for (i=windowsize;i<(nrows-windowsize);i++)
 {

 for (j=windowsize;j<(ncols-windowsize);j++)
 {

 urchins = 0;
 count = 0;

 wincenterx = llx + j*res + 0.5*res;
 wincentery = lly + nrows*res - (i*res + 0.5*res);
 winllx = wincenterx - (0.5*res + windowsize*res);
 winlly = wincentery - (0.5*res + windowsize*res);
 winurx = wincenterx + (0.5*res + windowsize*res);
 winury = wincentery + (0.5*res + windowsize*res);

 pos = observations.GetHeadPosition();

 for (k=0;k<observations.GetCount();k++)
 {
 tempobs = observations.GetNext(pos);

 if ((tempobs.x >= winllx) && (tempobs.x < winurx) &&
(tempobs.y >= winlly) && (tempobs.y < winury))
 {
 d = sqrt(((wincenterx - tempobs.x)*(wincenterx -
tempobs.x)) + ((wincentery - tempobs.y)*(wincentery - tempobs.y)));

 if (d <= tau)
 {
 kf = (3/pi)*((1-((d/tau)*(d/tau)))*(1-
((d/tau)*(d/tau))));

 urchins = urchins + (kf *
tempobs.urchincount);
 count = count + kf;

 }
 }
 }

 if ((validgrid.GetAt(CPoint (j,i)) != nodata))
 {
 if (count == 0)
 gridA.SetAt(CPoint (j,i),nodata);

 else
 gridA.SetAt(CPoint (j,i),(urchins/count));

 }

 }
 }

 cout << "Number of Samples per Strata: ";
 cin >> n;
 cout << "\n";

 cout << "Number of runs is set to 20";
 runs = 20;
 cout << "\n";

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 mastergridA.SetAt(CPoint (j,i), (gridA.GetAt(CPoint (j,i))));
 }
 }

 for (sampleloop=0;sampleloop<runs;sampleloop++)
 {
 filename = "";
 filename = int_to_string((sampleloop+1),filename);
 filename = "sample_set" + filename + ".txt";

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 gridA.SetAt(CPoint (j,i), (mastergridA.GetAt(CPoint (j,i))));
 }
 }

 outFile.open(filename);
 if(!outFile)
 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 //Zone 1

 llxwin = int((362383.06-llx)/res);
 llywin = (nrows - int((4768863.7-lly)/res));
 urxwin = int((431450.46-llx)/res);
 urywin = (nrows - int((4866671.22-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {

 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 1 did not contain enough valid data
points!!! \n";

 i = n;
 }
 }

 }

 //Zone 2

 llxwin = int((431450.46-llx)/res);
 llywin = (nrows - int((4833354.37-lly)/res));
 urxwin = int((469027.7-llx)/res);
 urywin = (nrows - int((4883055.12-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 200000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 2 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 3

 llxwin = int((469027.70-llx)/res);
 llywin = (nrows - int((4849736.33-lly)/res));
 urxwin = int((499998.65-llx)/res);
 urywin = (nrows - int((4916303.1-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 3 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 4

 llxwin = int((499998.65-llx)/res);

 llywin = (nrows - int((4866320.69-lly)/res));
 urxwin = int((535269.05-llx)/res);
 urywin = (nrows - int((4940833.53-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 4 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 5

 llxwin = int((535269.05-llx)/res);
 llywin = (nrows - int((4871969.51-lly)/res));
 urxwin = int((561878.3-llx)/res);
 urywin = (nrows - int((4940833.53-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 5 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 6

 llxwin = int((561878.3-llx)/res);
 llywin = (nrows - int((4905491.63-lly)/res));
 urxwin = int((587744.29-llx)/res);
 urywin = (nrows - int((4940833.53-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;

 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 6 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 7

 llxwin = int((587744.29-llx)/res);
 llywin = (nrows - int((4905784.11-lly)/res));
 urxwin = int((617253.62-llx)/res);
 urywin = (nrows - int((4950690.77-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {

 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 7 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 8

 llxwin = int((617253.62-llx)/res);
 llywin = (nrows - int((4917368.44-lly)/res));
 urxwin = int((662104.01-llx)/res);
 urywin = (nrows - int((4963889.58-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)

 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";
 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 8 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 //Zone 9

 llxwin = int((637903.62-llx)/res);
 llywin = (nrows - int((4963889.58-lly)/res));
 urxwin = int((662104.01-llx)/res);
 urywin = (nrows - int((4985552.27-lly)/res));

 for (i=0;i<n;i++)
 {
 data = false;
 maxout = 1000 * ((urxwin-llxwin)*(urywin-llywin));

 while (!data)
 {
 xsample = getrandom(llxwin,urxwin);
 ysample = getrandom(urywin,llywin);

 if (gridA.GetAt(CPoint (xsample,ysample)) != nodata)
 {
 outFile << (xsample*res+llx) << "\t" << ((nrows -
ysample)*res+lly) << "\t";

 outFile << gridA.GetAt(CPoint (xsample,ysample))
<< "\n";
 gridA.SetAt(CPoint (xsample,ysample),
double(nodata));

 data = true;
 }

 maxout = (maxout + 1);

 if (maxout == 0)
 {
 data = true;
 cout << "Zone 9 did not contain enough valid data
points!!! \n";
 i = n;
 }
 }
 }

 outFile.close();

 }

 for (sampleloop=0;sampleloop<runs;sampleloop++)
 {
 filename = "";
 filename = int_to_string((sampleloop+1),filename);
 filename = "mean_result" + filename + ".asc";

 filename2 = "";
 filename2 = int_to_string((sampleloop+1),filename2);
 filename2 = "sample_set" + filename2 + ".txt";

 while (!observations.IsEmpty())
 {
 observations.RemoveTail();
 }

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)

 {
 tempgrid.SetAt (CPoint (j,i),nodata);
 }
 }

 inFile.open(filename2);
 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 while(inFile)
 {
 inFile >> sample.x >> sample.y >> sample.urchincount;
 if (inFile) observations.AddTail(sample);
 }

 inFile.close();

 POSITION pos = observations.GetHeadPosition();

 for (i=windowsize;i<(nrows-windowsize);i++)
 {
 for (j=windowsize;j<(ncols-windowsize);j++)
 {

 urchins = 0;
 count = 0;

 wincenterx = llx + j*res + 0.5*res;
 wincentery = lly + nrows*res - (i*res + 0.5*res);
 winllx = wincenterx - (0.5*res + windowsize*res);
 winlly = wincentery - (0.5*res + windowsize*res);
 winurx = wincenterx + (0.5*res + windowsize*res);
 winury = wincentery + (0.5*res + windowsize*res);

 pos = observations.GetHeadPosition();

 for (k=0;k<observations.GetCount();k++)
 {
 tempobs = observations.GetNext(pos);

 if ((tempobs.x >= winllx) && (tempobs.x < winurx)
&& (tempobs.y >= winlly) && (tempobs.y < winury))
 {
 d = sqrt(((wincenterx -
tempobs.x)*(wincenterx - tempobs.x)) + ((wincentery - tempobs.y)*(wincentery -
tempobs.y)));

 if (d <= tau)
 {
 kf = (3/pi)*((1-((d/tau)*(d/tau)))*(1-
((d/tau)*(d/tau))));
 urchins = urchins + (kf *
tempobs.urchincount);
 count = count + kf;
 }
 }
 }

 if ((validgrid.GetAt(CPoint (j,i)) != nodata))
 {
 if (count == 0)
 tempgrid.SetAt(CPoint (j,i),nodata);

 else
 tempgrid.SetAt(CPoint (j,i),(urchins/count));
 }

 }
 }

 outFile.open(filename);
 if(!outFile)
 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 outFile << "NCOLS " << ncols << "\n";
 outFile << "NROWS " << nrows << "\n";
 outFile << "XLLCORNER " << llx << "\n";
 outFile << "YLLCORNER " << lly << "\n";
 outFile << "CELLSIZE " << res << "\n";
 outFile << "NODATA_VALUE " << nodata << "\n";

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 outFile << tempgrid.GetAt(CPoint (j,i));
 outFile << " ";
 }

 outFile << "\n";
 }

 outFile.close();

 }

 cout << "\n";
 cout << "The output is stored in 40 files: \n" << " 20 with sample locations and
20 resulting averages";
 cout << "\n";
 cout << "enter 1 to finish\n";
 cin >> intdummy;

 return nRetCode;
}

C++ computer code for generating plots of mean squared error (MSE) and mean
MSE

//Calculates MSE. Arc ASCII gridA is the original density file, arc ASCII tempgrid is //the
simulated density file, and arc ASCII grid B is the depth and habitat constraints

#include "stdafx.h"
#include "biomass.h"
#include <fstream.h>
#include "math.h"
#include "Matrix.h"
#include "Location.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

#endif

CString int_to_string(int number, CString startstring)
{
 bool done = false;

 while (!done)
 {
 if ((number/10) < 1)
 {
 if (number == 0)
 startstring = "0" + startstring;
 if (number == 1)
 startstring = "1" + startstring;
 if (number == 2)
 startstring = "2" + startstring;
 if (number == 3)
 startstring = "3" + startstring;
 if (number == 4)
 startstring = "4" + startstring;
 if (number == 5)
 startstring = "5" + startstring;
 if (number == 6)
 startstring = "6" + startstring;
 if (number == 7)
 startstring = "7" + startstring;
 if (number == 8)
 startstring = "8" + startstring;
 if (number == 9)
 startstring = "9" + startstring;

 done = true;
 }

 if ((number/10) >= 1)
 {
 startstring = int_to_string((number-(int(number/10)*10)),
startstring);
 number = int(number/10);
 }
 }

 return startstring;

}

///
// The one and only application object

CWinApp theApp;

//using namespace std;

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
 int nRetCode = 0;

 // initialize MFC and print and error on failure
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
 {
 // TODO: change error code to suit your needs
 cerr << _T("Fatal Error: MFC initialization failed") << endl;
 return nRetCode = 1;
 }
///
//////// MY CODE

 ifstream inFile; // Input data file.
 ofstream outFile; // Output data file.
 CMatrix gridA, tempgrid, result;
 char chardummy;
 int ncols, nrows;
 int intdummy = 0, i, j, nodata=-9999;
 double res, doubledummy, llx, lly;
 CString filename;
 int sampleloop;
 double a, b, c;

 gridA.Empty();
 tempgrid.Empty();

 int runs = 2;

 cout << "Enter 1 to load gridA.asc (will be used for llx, lly, and resolution): \n";
 cin >> intdummy;
 cout << " \n";

 inFile.open("gridA.asc");
 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> ncols;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> nrows;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> llx;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> lly;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> res;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy;
 inFile >> nodata;

 gridA.SetMatrixSize(CSize (ncols, nrows));

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 inFile >> doubledummy;
 gridA.SetAt(CPoint (j,i), doubledummy);
 }
 }

 inFile.close();

 tempgrid.SetMatrixSize(CSize (ncols,nrows));
 result.SetMatrixSize(CSize (ncols,nrows));

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 result.SetAt(CPoint (j,i), 0.0);
 }
 }

 for (sampleloop=0;sampleloop<runs;sampleloop++)
 {

 filename = "";
 filename = int_to_string((sampleloop+1),filename);
 filename = "mean_result" + filename + ".asc";

 inFile.open(filename);
 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> intdummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> intdummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy;
 inFile >> intdummy;

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 inFile >> doubledummy;
 tempgrid.SetAt(CPoint (j,i), doubledummy);
 }
 }

 inFile.close();

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 if (tempgrid.GetAt(CPoint (j,i)) != nodata)
 {
 a = tempgrid.GetAt(CPoint (j,i));
 b = gridA.GetAt(CPoint (j,i));
 c = (b-a)*(b-a);
 c = c + result.GetAt(CPoint (j,i));
 result.SetAt(CPoint (j,i), c);
 }
 }
 }

 }

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 if (result.GetAt(CPoint (j,i)) != nodata)
 {
 a = (result.GetAt(CPoint (j,i))/runs);
 result.SetAt(CPoint (j,i), a);
 }
 }
 }

 outFile.open("output.asc");

 if(!outFile)
 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 outFile << "NCOLS " << ncols << "\n";
 outFile << "NROWS " << nrows << "\n";
 outFile << "XLLCORNER " << llx << "\n";
 outFile << "YLLCORNER " << lly << "\n";
 outFile << "CELLSIZE " << res << "\n";
 outFile << "NODATA_VALUE " << nodata << "\n";

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 outFile << result.GetAt(CPoint (j,i));
 outFile << " ";
 }

 outFile << "\n";
 }

 outFile.close();

 cout << "\n";
 cout << "The output is stored in output.asc";
 cout << "\n";
 cout << "enter 1 to finish\n";
 cin >> intdummy;

 return nRetCode;
}

/*

 tempgrid.Empty(); // open and read grid

 inFile.open("somegrid.txt");
 if(!inFile)

 {
 cout << "Error opening file\n";
 return nRetCode;
 }

 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> intdummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy;
 inFile >> intdummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy;
 inFile >> doubledummy;
 inFile >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy >> chardummy >> chardummy >>
chardummy >> chardummy >> chardummy;
 inFile >> intdummy;

 for (i=0;i<nrows;i++)
 {
 for (j=0;j<ncols;j++)
 {
 inFile >> doubledummy;
 tempgrid.SetAt(CPoint (j,i), doubledummy);
 }
 }

 inFile.close();

*/

	Executive summary
	Introduction
	Materials and Methods
	Discussion
	
	
	
	
	Figure 4.2. Flowchart of simulation approach to estimate the variance associated with a sampling strategy for the Maine sea urchin fishery.

	Figure 4.8. Mean squared error (MSE) for stratified random sampling strategies with equal strata width using 90 samples. The dashed line represents the MSE for the original sampling strategy with 90 sites, 10 in each of the 9 unequally sized strata.
	
	
	
	
	
	Appendix
	Procedure for identifying optimal sampling strategies

	C++ computer code for generating plots of mean squared error (MSE) and mean MSE

